Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model.

نویسندگان

  • T Inada
  • K Kimata
  • H Aiba
چکیده

BACKGROUND The inhibition of beta-galactosidase expression in glucose-lactose diauxie is a typical example of the glucose effect in Escherichia coli. It is generally believed that glucose exerts its effect at least partly by reducing the intracellular cAMP level. However, there is no direct evidence that the inhibitory effect of glucose on the expression of the lac operon is mediated by a reduction of the cAMP level in the glucose-lactose system. RESULTS To examine the roles of cAMP and the cAMP receptor protein (CRP) in the glucose effect, the intracellular levels of these factors were determined during diauxic growth in a glucose-lactose medium. We found that the levels of cAMP and CRP in a lactose-grown phase were not higher than those in a glucose-grown phase, although the cAMP levels increased transiently during the lag phase. The addition of exogenous cAMP eliminated diauxic growth but did not eliminate glucose repression. Glucose repression and diauxie were observed in cells which lack cAMP but produce a cAMP-independent CRP. In addition, inactivation of the lac repressor by the disruption of the lacI gene or the addition of IPTG, eliminated glucose repression. CONCLUSION We conclude that the repression of beta-galactosidase expression by glucose is not due to the reduction of the cAMP-CRP level but due to an inducer exclusion mechanism which is mediated by the phosphoenolpyruvate-dependent sugar phosphotransferase system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose-lactose diauxie in Escherichia coli.

Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(...

متن کامل

cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli.

The inhibition of beta-galactosidase expression in a medium containing both glucose and lactose is a typical example of the glucose effect in Escherichia coli. We studied the glucose effect in the lacL8UV5 promoter mutant, which is independent of cAMP and cAMP receptor protein (CRP). A strong inhibition of beta-galactosidase expression by glucose and a diauxic growth were observed when the lacL...

متن کامل

Guanosine 3',5'-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli.

Guanosine 3',5'-bispyrophosphate (ppGpp), also known as "magic spot," has been shown to bind prokaryotic RNA polymerase to down-regulate ribosome production and increase transcription of amino acid biosynthesis genes during the stringent response to amino acid starvation. Because many environmental growth perturbations cause ppGpp to accumulate, we hypothesize ppGpp to have an overarching role ...

متن کامل

Regulation of ribonucleic acid synthesis in Escherichia coli during diauxie lag: accumulation of heterogeneous ribonucleic acid.

The synthesis of ribonucleic acid (RNA) and of protein in Escherichia coli during glucose-lactose diauxie lag have been examined. The rate of RNA synthesis is about 7%, of the corresponding rate during exponential growth and the rate of protein synthesis 10 to 15%. Inhibition of RNA synthesis occurs to the same extent in both rel and rel(+) strains. The RNA which accumulates during 20 min in di...

متن کامل

Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli.

While catabolite repression by glucose has been studied extensively and is understood in large detail in Enterobacteriaceae, catabolite repression by carbohydrates that are not transported by the phosphotransferase system (PTS) has always remained an enigma. Examples of non-PTS carbohydrates that cause catabolite repression in Escherichia coli are gluconate, lactose and glucose 6-phosphate. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes to cells : devoted to molecular & cellular mechanisms

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 1996